HISTORIA DE LA PILA
La historia de la pila refleja el desarrollo histórico de las diferentes celdas electroquímicas empleadas para obtener una corriente eléctrica a partir de la energía química contenida en unas sustancias químicas que sufren una reacción de oxidación-reducción.
En este caso, el nombre de pila se refiere de modo genérico a todos los dispositivos que generan una corriente continua a partir de una reacción química, aunque existen diferencias entre ellos: celdas voltaicas (primarias y secundarias), pilas eléctricas, acumuladores, baterías y pilas de combustible. Para ver dichas diferencias, consultar el artículo sobre generadores electroquímicos
Aproximadamente en 1936, los arqueólogos descubrieron en una aldea cercana a Bagdad, un conjunto de vasijas de terracota cada una de las cuales contenía un rollo de lámina de cobre que albergaba una varilla de hierro. Algunos científicos especulan que estos artilugios podrían ser antiguas celdas galvánicas (alrededor de 2.000 años de antigüedad, aunque el cálculo de la edad sigue siendo debatido), a los que se les denomina la "Batería de Bagdad". Se cree que un ácido común de los alimentos, como el jugo de limón o vinagre, sirvió como un electrolito, sin embargo parece ser que dichos recipientes nunca contuvieron en su interior ningún electrolito (sin el cual no pudieron haber funcionado como baterías). Las réplicas modernas han producido con éxito corrientes eléctricas, dando crédito a esta hipótesis. Si la muestra fue de hecho una batería, pudo haber sido usada para galvanoplastia (sin embargo, para depositar 10 gramos de oro o plata con la intensidad generada por una de dichas pilas se habrían necesitado casi 6 días de funcionamiento continuo, por lo que es muy improbable), para producir leves descargas eléctricas como fuente de experiencia religiosa, o simplemente utilizada para almacenar rollos antiguos.
EVOLUCION
La pila ha recibido también varias evoluciones:
En 1780, Luigi Galvani estaba diseccionando una rana, sujeta con un gancho de metal. Cuando tocó la pata de la rana con su bisturí de hierro, la pierna se encogió como si el animal aún estuviese vivo. Galvani creía que la energía que había impulsado la contracción muscular observada venía de la misma pierna, y la llamó "electricidad animal".
Sin embargo, Alessandro Volta, un amigo y colega científico, no estaba de acuerdo, creyendo que este fenómeno estaba causado realmente por la unión o contacto entre dos metales diferentes que estaban unidos por una conexión húmeda. El propio Volta verificó experimentalmente esta hipótesis, y la publicó en 1791. Fue perfeccionada hasta que, en 1800, Volta inventó la primera batería o generador electroquímico capaz de producir una corriente eléctrica mantenida en el tiempo, y por ello fue conocida como pila voltaica. La pila voltaica consiste de pares de discos de cobre y zinc apilados uno encima del otro (de ahí el nombre de pila) , separados por una capa de tela o de cartón impregnado en salmuera (este era el electrolito). A diferencia de la botella de Leyden, la pila voltaica producía una corriente continua y estable, y perdía poca carga con el tiempo cuando no se la utiliza, aunque sus primeros modelos no podían producir una tensión lo suficientemente fuerte como para producir chispas.3 Experimentó con diversos metales y encontró que el zinc y la plata le dio los mejores resultados.
Volta creía que la corriente se producía como resultado de la unión entre dos materiales diferentes, con sólo tocarse uno al otro (esta teoría científica obsoleta fue conocida como la tensión de contacto), y no como resultado de reacciones químicas (sin embargo, véase efecto termoeléctrico). En consecuencia, consideró que la corrosión que sufrían las planchas de zinc podía ser un defecto relacionado que tal vez podría corregirse de alguna manera con el cambio de materiales. Sin embargo, ningún científico había conseguido evitar esta corrosión. De hecho, se observó que la corrosión era más rápido cuando se producía más corriente. Esto sugirió que la corrosión era realmente parte integrante de la capacidad de la batería para producir una corriente. Esto, en parte, llevó al rechazo de la teoría de la tensión de contacto en favor de la teoría electroquímica. En las ilustraciones de Volta de su pila de corona y la pila voltaica (primera figura de arriba), aparecen discos de metal extra, ahora sabemos que innecesarios, en la parte superior y en la inferior. La figura que aparece en esta sección, de la pila voltaica de zinc-cobre, tiene el diseño moderno, una indicación de que "la tensión de contacto" no es la fuente o causa de la fuerza electromotriz de la pila voltaica.
Los modelos de pila originales de Volta tienen algunos fallos técnicos, como fugas del electrólito y cortocircuitos provocados debido al peso de los discos que comprimen los paños empapados en la salmuera. El inglés William Cruickshank resolvió este problema mediante la fijación de los elementos en una caja en lugar de amontonarlos en una pila. Esto fue conocido como la batería de artesa.4 El propio Volta diseñó una variante que consiste en una cadena de vasos llenos de una solución de sal, unidos por arcos metálicos sumergidos en el líquido. Esto fue conocido como la Corona de Copas o pila de corona. Estos arcos estaban hechos de dos metales diferentes (por ejemplo, zinc y cobre), soldados entre sí. Este modelo también demostró ser más eficiente que las pilas originales,5 aunque no fue tan popular.
Otro problema de las pilas de Volta era su corta duración (una hora en el mejor de los casos), lo cual estaba causado por dos fenómenos. El primero era que la corriente producía la electrolisis de la disolución de electrólitos, lo que originaba una película de burbujas de hidrógeno que se formaban en el electrodo de cobre, que aumentaba constantemente la resistencia interna de la batería (Este efecto, llamado polarización, es contrarrestado en las células modernas con medidas adicionales). El otro era un fenómeno llamado de acción local, por el cual se formaban minúsculos cortocircuitos en torno a las impurezas del cinc, causando su degradación. Este último problema fue resuelto en 1835 por William Sturgeon, quien descubrió que mezclando algo de mercurio con el zinc se eliminaba este inconveniente.6
A pesar de sus defectos, las pilas de Volta proporcionaban una corriente más permanente que las jarras o botellas de Leyden, e hizo posible muchos experimentos y descubrimientos nuevos, como la electrolisis del agua, realizada por primera vez por Anthony Carlisle y William Nicholson (químico).
1859 - La pila de plomo-ácido: la primera batería recargable.
Ilustración del siglo XIX de una pila de plomo-ácido de Planté.
Hasta este punto, todas las baterías existentes debían ser vaciadas de forma permanente cuando se agotaban los reactivos y finalizaban todas sus reacciones químicas. En 1859, Gaston Planté inventó la batería de plomo-ácido, el primer acumulador, o sea, la primera batería que puede recargarse (en realidad, regenerar las sustancias químicas gastadas) haciendo pasar una corriente en sentido inverso a través de ella. Una batería de plomo-ácido se compone de un ánodo de plomo y un cátodo de dióxido de plomo sumergidos en ácido sulfúrico. Ambos electrodos reaccionan con el ácido para producir sulfato de plomo (II), pero la reacción en el ánodo de plomo libera electrones mientras que la reacción en el óxido de plomo los capta, lo que produce una corriente. Estas reacciones químicas pueden ser revertidas mediante la aplicación de una corriente en sentido inverso, lo que permite recargarla, al igual que se de debe hacer antes de su primer uso.
El primer diseño de Planté consistía en dos placas de plomo separadas por bandas de goma y enrolladas en espiral.8 Sus baterías se utilizaron por primera vez para alimentar la luz en los vagones del tren mientras se detenía en una estación. En 1881, Camille Alphonse Faure inventó una versión mejorada que consistía en una celosía o rejilla de plomo en la que se apelmazó una pasta de dióxido de plomo, formando una placa. Varias planchas podían apilarse para obtener un mayor rendimiento. Este diseño fue más fácil de producir en masa.
En comparación con otras baterías, el diseño de Planté era más bien pesado y voluminoso para la cantidad de energía que podría almacenar. Sin embargo, podría producir picos de corriente muy grandes. También tenía una resistencia interna muy baja, por lo que una misma batería puede usarse para alimentar múltiples circuitos.6
La batería de plomo aún se utiliza hoy en los automóviles y otras aplicaciones donde el peso no es un factor importante. El principio básico no ha cambiado desde 1859, aunque en la década de 1970 se desarrolló una variante que utiliza un electrolito en forma de gel en lugar de un líquido (comúnmente conocido como la batería de gel), permitiendo que la batería pueda ser utilizada en diferentes posiciones sin fallos o fugas.
Hoy en día las celdas electroquímicas se clasifican como "primarias" si producen una corriente sólo hasta que los reactivos químicos se han agotado, y "secundarias", si las reacciones químicas puede ser revertidas mediante la recarga de la célula. La batería de plomo-ácido fue, por tanto, la primera batería o celda secundaria.
En 1899, un científico sueco llamado Waldmar Jungner inventó la batería de níquel-cadmio, una batería recargable que tenía electrodos de níquel y cadmio en una disolución de hidróxido de potasio. Se comercializó en Suecia en 1910 y llegó a Estados Unidos en 1946. Los primeros modelos eran robustos y tenían una densidad de energía significativamente mayor que las baterías de plomo ácido, pero eran mucho más caros
Waldmar Jungner también inventó una batería de níquel-hierro el mismo año que su batería de Ni-Cd, pero resultó ser inferior a su homóloga de cadmio y, por consiguiente, nunca se molestó en patentarla. Producía mucho más hidrógeno gaseoso cuando estaba cargada, lo que significa que no puede cerrarse, y el proceso de carga era menos eficiente (aunque era más barato).
Sin embargo, Thomas Edison recogió el diseño de la batería de níquel-hierro de Jungner, la patentó él mismo y la vendió en 1903. Edison quería comercializar un sustituto más ligero y duradero para la batería de plomo-ácido que impulsaba a algunos de los primeros automóviles, y esperaba que de esta forma los coches eléctricos se convertirían en el estándar, con su empresa como proveedor de la batería principal. Sin embargo, los clientes encontraron que su primer modelo era propenso a fugas y de corta duración de la batería, y no superaba a la batería de plomo-ácido por mucho. Aunque Edison fue capaz de producir un modelo más fiable y potente siete años más tarde, esta vez el Ford modelo T, de bajo costo y buena fiabilidad, había hecho que los autos con motor de gasolina fuesen la norma. A pesar de ello, la batería de Edison logró un gran éxito en otras aplicaciones.
La pila de zinc-óxido de mercurio (II) es conocida normalmente como pila de mercurio o pila de botón porque suele tener forma de disco pequeño. Se utiliza en audífonos, células fotoeléctricas y relojes de pulsera eléctricos. El electrodo negativo es de cinc, el electrodo positivo de óxido de mercurio (II) y el electrólito es una disolución de hidróxido de potasio. La batería de mercurio produce 1,34 V, aproximadamente.16
Son muy tóxicas y perjudiciales para el ambiente, por contener hasta un 30% de mercurio. Debido a su toxicidad, ya no está permitida su comercialización ,aunque se emplean como celdas de referencia para comparar con las demás pilas.
La pila de óxido de plata es parecida a la pila de mercurio, cambiando el óxido de mercurio por óxido de plata, y suministra 1,5 voltios. Sirven para corrientes pequeñas (relojes, etc.).16 Tiene buena relación energía-peso y pobres respuestas a baja temperatura. Contienen un 1% de mercurio.